
LA-UR-13-26006
Approved for public release; distribution is unlimited.

Title: Functional and Performance Assessment of Erasure
Coded Storage Systems

Author(s): Sanchez, Taylor E
Sackos, Joshua P
Crossman, Blair A

Intended for: technical report

Issued: 2013-07-30

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National 
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to 
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. 
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the 
U.S. Departmentof Energy.  Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; 
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.



Functional and Performance Assessment of Erasure Coded

Storage Systems

Taylor Sanchez - California State University San Bernardino
Josh Sackos - Washington State University

Blair Crossman - New Mexico Tech

Mentors: HB Chen and Jeff Inman

July 30, 2013

1



Contents

1 Abstract 3

2 Functional Tests 3

3 Testbed 3
3.1 Scality Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Caringo Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Network Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Scality 5
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.3 The Basics: Reading and Writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.3.1 RESTful . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.3.2 POSIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.4 Recovery Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.5 Data Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.6 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.7 Scality Results and Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Caringo 8
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.3 The Basics: Reading and Writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.3.1 Basic Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3.2 POSIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.4 Recovery and Rebalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.5 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.6 Caringo Result and Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6 Conclusions 9
6.1 Futurework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

7 Acknowledgements 11

8 References 12

Appendices 13
A Network Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
B Scality Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
C Scality Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C.1 Node Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
C.2 Supervisor Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
C.3 Node Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
C.4 Supervisor Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

D Scality cURL Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
E Scalitty MetaData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
F Scality SFUSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
G Caringo Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
H Caringo cURL Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
I Caringo MetaData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Glossary 32

2



1 Abstract

Current storage systems using RAID technologies were not designed to support exascale computing
systems[4]. Multiple disk drives failures (more than two) have not been an issue in the past. Conventional
hard disk drive capacities continue to grow beyond the terabyte range and storage systems continue to
grow to hundreds of petabytes and even exabytes. The need to efficiently handle multiple disk drive fail-
ures is now a reality and a challenging problem. Rather than separating the data from error correction
or check data as parity and CRCs do, erasure codes expand the data, adding redundancy so even if a
portion of the data is mangled or lost, the original data can be retrieved from the remaining portion.[4]
In recent years, various research and development efforts have attempted to create an erasure code and
disk-based archive storage system with power-efficiency, data integrity, and system reliability[8]. In this
project, we plan to conduct function and performance assessments of erasure code storage systems. We
plan to build two small test beds for an all disk parallel archive storage system and conduct tests erasure
code storage software from Scality[7] and Caringo[2].

As we approach exascale computing, disk storage becomes an attractive option due to scalability
of disk bandwidth over tape drive[3]. Disk failure rates make exascale archive systems prone to data
loss. Replication is a possible solution, but can double or triple required storage space. Erasure coding
is a promising option for an exascale archive because it offers the durability of replication with less
overhead[5]. The functionality of an erasure code archive system remains untested at exascale. Our
project was to build and verify the functionality of two prototype erasure storage archives using com-
mercial products from Scality and Caringo.

Both products had the functionality to read, write, balance, and rebuild data as well as offering
metadata access. Caringo did not provide us with a POSIX gateway, but has a metadata indexing tool
that allowed querying. We did not have the Scality indexing tool to query the metadata, but we were
provided with the POSIX interface SFUSE. The POSIX gateway caused an average bandwidth loss of
70% for small files (less than 1MB) and 50% loss for large files (greater than 1GB).

2 Functional Tests

The following system setup and functional tests were performed.

1. Setup two commercial prototype systems for:

(a) Scality
(b) Caringo

2. Configured erasure coding software and built two archive storage systems.

3. Used Block storage device to access Object storage

4. Conducted the following tests on both systems:

(a) Data ingesting (write operation)
(b) Data retrieving (read operation)
(c) Metadata querying (index and attribute searching)
(d) Metadata accessing
(e) Data load balance testing
(f) Data repairing

5. Gathered preliminary data on POSIX interface overhead

3 Testbed

The servers used in this experiment consisted of 3 SuperMicro, 6 HP Proliant , and 10 IBM servers.
The nodes were interconnected a via 1GigE switch. The switch was a 3COM SuperStack3 Switch 3870
24 port model. The terminal server used was a Cyclades-TS3000 terminal server.

3



SuperMicro SC745

• X7DWA-N Motherboard

• Dual Intel Xeon E5410 @ 2.33Ghz LGA771Processors

• 16GB and one server has 32GB (Modules: 4GB DDR2 @ 667Mhz)

• 1 WesternDigital 1TB HDD

• 1 Hitachi 4TB HDD (only on admin nodes)

• Redundant Power Supply

HP Proliant DL160 G6

• Dual Intel Xeon E5504 @ 2.00Ghz LGA1366 Processors

• 24GB (Modules: 2GB DDR3 @ 800Mhz)

• 32GB (Modules: 8GB DDR3 @800Mhz)

• 4 WesternDigital 1TB HDD

IBM System x3755

• Quad AMD 64 Opteron

• 32GB (Modules: 2GB DDR2)

• 4 WesternDigital 1TB HDD

3.1 Scality Testbed

A SuperMicro server with a 4TB Hitachi hard drive was used as the administration node. The storage
nodes in the ring consisted of 6 HP Proliant servers, each with 3 x 1TB hard drives dedicated to ring
storage space. Three of the storage nodes had 24GB of ram, and the other three 32 GB. The erasure
coding scheme used in the Scality ring was n=3, and k=3.

3.2 Caringo Testbed

A SuperMicro server with 32 GB of RAM and a 4TB Hitachi hard drive was used as a metadata
indexer. The storage nodes in the cluster consisted of 10 IBM servers, each with 4 x 1TB hard drives
dedicated to storage space. When powered on, the storage nodes PXE boot a Caringo CAStor image
into RAM. The erasure coding scheme used in the Caringo cluster was n=3, and k=3.

3.3 Network Overview

Figure 1 shows a graphical overview of the testbed network. The DHCP and DNS zone configuration
files are listing 3 and listing 4 in appendix A. Both Caringo and Scality make use of round robin dns
forwarding to load balance data streams.

4



Figure 1: Network Overview.

4 Scality

4.1 Overview

For every hard drive in the Scality ring there is a daemon running that is responsible for managing
its respective disk. On each Proliant node there were 6 virtual machines that ran, making a total of 36
virtual machines in the Scality ring. Virtualization allows for a slightly more flexible setup for rebuilding
data. Figure 4 in appendix B shows the Scality ring [6] that was implemented in this project. Every
green oval is a virtual node.

4.2 Install

To install Scality in an existing Linux system, the proper services need to be installed on each node.
Once installed Scality will need to be configured, see listing 5 and 6 in appendix C for details. Further
customizations will require the sproxyd.conf file to be edited, see listing 7 in appendix C for details.

4.3 The Basics: Reading and Writing

The two interfaces for the ring in this project were the SFUSE (must be installed) and REST.
Currently the RESTful interface limits the maximum size of a file to upload to 500MB. This limit will
be removed future releases. See listing 11 in appendix F for details on SFUSE usage and installation.

5



4.3.1 RESTful

The service sproxyd will redirect your stream into the ring. Something to be aware of is that Curl
loads the full file size into ram as it uploads the stream. This makes for a troublesome situation on low
ram machines if Scality does remove their 500MB file upload limit. Appendix D contains a list of the
curl commands.

4.3.2 POSIX

Scality provides a FUSE interface to communicate with the ring. While the POSIX interface is a
requirement for the transition from tape storage to hard disk, it is less than ideal. Basic benchmarks of
transferring different sized files through REST and through SFUSE (POSIX interface) interfaces were
collected. In appendix F is the commands to run in bash to get SFUSE installed[6]. Once installed
you should be able to use the simple cp command to put data on /ring/fuse/folder/file.name (notice it
needs some sort of folder within the fuse directory, no files can go in the root of fuse). There is a large
overhead with using the Scalitys POSIX interface, see figure 2 in for details.

There was not enough granularity in the tests to check where the breaking point is for the SFUSE’s
overhead. As you can see it does quite well on the 100MB files, but at 1GB it quickly drops. It seems
reasonable to hypothesize that the 500MB data chunking size reduces the performance as SFUSE needs
to start breaking up the data into chunks.

Figure 2: POSIX Overhead

4.4 Recovery Capabilities

Recovery requires a manual command to the supervisor. Data was recoverable during and after a
rebuild, and when taking down servers. Performance overhead was not tested during a rebuild as fairly
basic systems were used. Something worth mentioning about the supervisor is that it is not required for
the ring to continue running, it can survive up to 24 hours without the supervisor available. A heartbeat
fallback would probably be a good idea in a production system. Figure 3 is a screen shot where you
can see the option to start the Repair action. Scality uses a type of virtual node that allows Scality to
rebuild with less than required physical nodes. This means once you get the nodes back up, the ring

6



simply needs to rebalance the data to the new nodes.

Figure 3: Scality Supervisor

4.5 Data Balancing

This testing is very time consuming and was conducted throughout our testing. Although this was
not the best documented we did see that the disks remained well balanced throughout our testing. The
scality supervisor does list the storage usage on each node, as can be seen in the second screenshot of
the Scality Overview section. One way to get a good simple look at the data balancing is to run ’df’ on
each node and check that they are all using a similar amount of each hard drive. The shortened output
(listing 1) below was run after all testing was all finished and shows the disks to still be balanced through
a rebuild, nodes being turned off for long time periods and having data written during the process.

Listing 1: Scality Balance

1 #Scality Balance
2 clush −w n[00,01,03,07,10,15] df 2> /dev/null | grep scality
3 #output:
4 #n00: /dev/sdb1 961432904 526904824 434528080 55% /scality/disk1
5 #n00: /dev/sdc1 961432904 524755448 436677456 55% /scality/disk2
6 #n00: /dev/sdd1 961432904 523089924 438342980 55% /scality/disk3
7 #n03: /dev/sdb1 961432904 527370188 434062716 55% /scality/disk1
8 #n03: /dev/sdc1 961432904 524312968 437119936 55% /scality/disk2
9 #n03: /dev/sdd1 961432904 522650476 438782428 55% /scality/disk3

10 #n07: /dev/sdb1 961432904 527218648 434214256 55% /scality/disk1
11 #...

7



4.6 Metadata

While Scality does not supply an indexing service out of the box, there are still ways of accessing the
metadata contained in each server and file. The software Scality provides separately is called ”Mesa”.
Without the Mesa software there are two ways of obtaining the metatdata in the system, one gets the
metadata regarding the arc storage keys in the server, the other gets the metadata regarding the specific
object.

A script to get the key-values from the servers is listed in appendix E, this produces a surprising
amount of data.

The files will supply their metadata by using Curl with the corresponding simple command:

Listing 2: Single File MetaData

1 curl −0 −I http://localhost:81/proxy/chord/fileKey
2 curl −0 −I http://localhost:81/proxy/arc/fileKey

4.7 Scality Results and Observations

Scality didnt pass the metadata query requirement because it lacked the Mesa indexing service.
Scality installs on top of an existing Linux operating system so it is very flexible and customizable. This
stateful install is also inefficient as it takes up disk space that would otherwise be available to the storage
cluster. The 500MB file size limit is small for the huge files that Los Alamos National Laboratory will
need to push to their archive system. These problems seem possible to fix as Scality seems willing to
work with their customers to improve their product. We ran a simple parallel write test on the ring to
see if throughput would scale, and early testing indicates that it does.

5 Caringo

5.1 Overview

Caringo’s CASTor software offers a bare-metal deployment. Each node is stateless, and can be
provisioned either by usb key, or PXE boot from a network. CASTor nodes are decentralized. Each
node replicates and encodes content, without any specialized nodes. When a new stream enters the
CAStor cluster a ”bid” is called from from the nodes in the cluster. Streams are then pushed to the
node with the lowest bid, which is then responsible for encoding the stream and pushing out the data
and code segments to other nodes in the cluster[2].

5.2 Install

The Caringo system installs via a RAM disk from a pxeboot setup. There is a config file that is kept
on the admin node which will be delivered to the nodes during boot. When a new node comes online it
needs access these files:

1. The castor file system image
2. The castor license file
3. The castor node configuration list: cfg-list.txt
4. The node configuration file pointed to by the list: node.cfg

See the examples in appendix G for how we set up DHCP for netbooting.

5.3 The Basics: Reading and Writing

Caringo’s CAStor can be interfaced through either REST, or a commercially available Content File
Server that allows data to be written to the cluster using a POSIX compliant NFS mount. The Content
File server was not made available to us until after our testing deadline, so we were unable to access
its functionality[2]. We were on the other had able to use the RESTful interface to interact with the
CAStor cluster.

8



5.3.1 Basic Commands

Our testing was done through the RESTful interface utilizing the curl tool to create the http requests
for us. Uploading objects to a CAStor cluster involves creating a bucket, and then storing objects in
that bucket. The cluster will then return to you a GUID for that file, but you will still be able to access
the file by simply performing a GET request on the URL that you stored the data in. One drawback of
the RESTful interface is that streams are constantly moving between the nodes, so all RESTful requests
must allow redirect when a 301 error is found.

See the command examples in appendix H.

5.3.2 POSIX

We received the Content File Server that serves as CAStor’s POSIX interface after our testing phase
had concluded[2]. We were unable to test its functionality. This interface was a requirement for the
production setting as the current system is using a Block storage interface and will continue to require
a Block storage interface until a transition to a RESTful backend is completed.

5.4 Recovery and Rebalance

A CAStor cluster is constantly rebuilding and rebalancing. In fact any volume or node left offline for
over 14 days will be automatically reformatted and rebalanced. A supervisor may suspend rebuilding
during maintenance, but the default behavior is to instantly begin a rebuild when a node goes offline.
After removal of a node we found that all data could be successfully recovered, but if the number of nodes
in the cluster fell beneath the total number of data and code segments, writing to the cluster would fail.
For example in our cluster we had 3 + 3 erasure code. If we had 6 nodes, we could write and read from
the cluster. If we fell down to 5 nodes, we could read from the cluster, but no longer write to it until
the cluster again had 6 nodes. The bidding system of the nodes allows for a near seamless rebuild while
writing to the cluster, as new jobs will be assigned the nodes not responsible for the rebuild. As every
node in the cluster is at once a supervisor node, compute node, and storage node, there is no single point
of access to the cluster that could be tied up by a rebuild. This means that as long as you have enough
nodes to compute a rebuild, regular cluster management and use is seamless. [2]

5.5 Metadata

Caringo’s CAStor utilizes elastic search in order to index and query metadata. The indexer will index
certain basic metadata fields for any file and offers the option to increase the metadata automatically
obtained with a change to the node.cfg. [1]

The metadata is easy to find, and intuitive to use. Files may be found by size, name, or any user
defined metadata. See appendix I for examples.

Content can be reindexed at any time using snmp. This versatitilty comes at a price though. All
streams must pass through the indexing server so that thier metadata can be indexed. If the indexing
server is swamped, or runs out of memory, it can slow the storage cluster to a crawl. Therefor as the
cluster increases in size, so to must the number of indexing servers increase.

5.6 Caringo Result and Observations

Caringo’s CAStor is stateless. This prevents the installation from taking up a disk, but unfortunately
this comes at the expense of not being able to customize the storage nodes in any way not specifically
supported by the vendor.

A Caringo POSIX interface was provided past the testing deadline. Caringo promises that the Content
Filer Server provides a seamless transition into the cluster from a POSIX file system mounted over NFS,
and that the CFS can handle multiple writes without causing a bottleneck, but its functionality remains
unverified [2].

6 Conclusions

We have found that the technology of erasure storage is a viable solution to LANLs archive system
due to its scalability, parallelism, and robustness. Individually neither software meets the feature re-
quirements. Caringo has (what appears to be) a more mature solution, but we were unable to test the

9



POSIX interface. The POSIX interface was one of the requirements for the archive system. Scality has a
higher potential to meet the needs of the lab as they are willing to work with their customers to engineer
a more fitting solution. The two biggest downfalls of Scality were that they have only beta support for
single files over 500MB , and Scality currently requires a stateful (to disk) install. Continued investment
into REST interfaced erasure storage has great potential to replace tape drive backups.

6.1 Futurework

There is a need to continue testing if erasure storage can meet the speed requirements of high
performance computing. There will need to be some calibration done, as the erasure storage systems
are currently geared towards cloud (or internet) applications. There are already plans and designated
clusters to continue testing and verify the viability of erasure storage.

10



7 Acknowledgements

Dane Gardner - NMC Instructor
Matthew Broomfield - NMC Teaching Assistant
HB Chen - HPC-5 - Mentor
Jeff Inman - HPC-1- Mentor
Carolyn Connor - HPC-5, Deputy Director ISTI
Andree Jacobson - Computer & Information Systems Manager NMC
Josephine Olivas - Program Administrator ISTI
Los Alamos National Labs, New Mexico Consortium, and ISTI

11



8 References

[1] Caringo. http://www.caringo.com. http://www.Caringo.com.

[2] Caringo. Castor scalable, efficient and elastic object storage software. http://www.Caringo.com/

downloads/datasheets/Caringo-CAStor-Object-Storage.pdf, June 2012.

[3] Gary Grider. ExaScale FSIO and Archive Can we get there? Can we afford to? Technical Report
LA-UR-10-04611, Los Alamos National Laboratory, September 2011. Slides for presentation.

[4] J. S. Plank and C. Huang. Tutorial: Erasure coding for storage applications, part 1. Slides presented
at FAST-2013: 11th Usenix Conference on File and Storage Technologies http://web.eecs.utk.

edu/~plank/plank/papers/FAST-2013-Tutorial.html, February 2013.

[5] J. S. Plank and C. Huang. Tutorial: Erasure coding for storage applications, part 2. Slides presented
at FAST-2013: 11th Usenix Conference on File and Storage Technologies http://web.eecs.utk.

edu/~plank/plank/papers/FAST-2013-Tutorial.html, February 2013.

[6] Scality. http://www.docs.scality.com.

[7] Scality. http://www.scality.com. http://www.Scality.com.

[8] Marc Staimer. Cloud storage’s ”organic” or living evolution. Slides presented at 2011 SNIA Cloud-
burst Summit http://www.snia.org/sites/default/files2/cloudburst2011/presentations/

MarcStaimer_Cloud_Storage_Organic_revO2.pdf, September 2011.

12

http://www.Caringo.com
http://www.Caringo.com/downloads/datasheets/Caringo-CAStor-Object-Storage.pdf
http://www.Caringo.com/downloads/datasheets/Caringo-CAStor-Object-Storage.pdf
http://web.eecs.utk.edu/~plank/plank/papers/FAST-2013-Tutorial.html
http://web.eecs.utk.edu/~plank/plank/papers/FAST-2013-Tutorial.html
http://web.eecs.utk.edu/~plank/plank/papers/FAST-2013-Tutorial.html
http://web.eecs.utk.edu/~plank/plank/papers/FAST-2013-Tutorial.html
http://www.Scality.com
http://www.snia.org/sites/default/files2/cloudburst2011/presentations/MarcStaimer_Cloud_Storage_Organic_revO2.pdf
http://www.snia.org/sites/default/files2/cloudburst2011/presentations/MarcStaimer_Cloud_Storage_Organic_revO2.pdf


Appendices

Appendix A: Network Setup
The Admin subnet was not necessary and can be ignored.

Listing 3: dhcpd.conf

1 ddns−update−style interim;
2 option routers 192.168.0.254;
3 allow client−updates;
4 shared−network name{
5 option domain−name ”orange.com”;
6 option domain−name−servers newHead.orange.com;
7 option subnet−mask 255.255.255.0;
8 #Admin Subnet
9 subnet 192.168.0.0 netmask 255.255.255.0{

10 option subnet−mask 255.255.255.0;
11 option domain−name−servers 192.168.0.254;
12 option routers 192.168.0.254;
13 }
14 #Scality Subnet
15 subnet 192.168.1.0 netmask 255.255.255.0 {
16 option subnet−mask 255.255.255.0;
17 option domain−name−servers 192.168.1.254;
18 option routers 192.168.1.254;
19 authoritative;
20 }
21 #Caringo Subnet
22 subnet 192.168.2.0 netmask 255.255.255.0 {
23 allow booting;
24 allow bootp;
25 filename ”pxelinux.0”;
26 range 192.168.2.100 192.168.2.200;
27 option subnet−mask 255.255.255.0;
28 option domain−name−servers 192.168.2.254;
29 option routers 192.168.2.254;
30 authoritative;
31 }
32 host caringoadm {
33 option host−name caringoadm;
34 option domain−name ”orange.com”;
35 hardware ethernet 00:30:48:c5:96:83;
36 fixed−address 192.168.2.1;
37 }
38 #Scality Nodes
39 host scalityadm {
40 option host−name scailtyadm;
41 option domain−name ”orange.com”;
42 hardware ethernet 00:30:48:c5:96:73;
43 fixed−address 192.168.1.1;
44 }
45 host n15 {
46 option host−name n15;
47 option domain−name ”orange.com”;
48 hardware ethernet 00:26:55:18:92:50;
49 fixed−address 192.168.1.115;
50 }
51 host n00 {
52 option host−name n00;

13



53 option domain−name ”orange.com”;
54 hardware ethernet 00:25:b3:ae:cb:cc;
55 fixed−address 192.168.1.100;
56 }
57 host n01 {
58 option host−name n01;
59 option domain−name ”orange.com”;
60 hardware ethernet 00:26:55:18:82:5e;
61 fixed−address 192.168.1.101;
62 }
63 host n03 {
64 option host−name n03;
65 option domain−name ”orange.com”;
66 hardware ethernet 00:26:55:18:a5:02;
67 fixed−address 192.168.1.103;
68 }
69 host n10 {
70 option host−name n10;
71 option domain−name ”orange.com”;
72 hardware ethernet 00:25:b3:ae:86:48;
73 fixed−address 192.168.1.110;
74 }
75 host n07 {
76 option host−name n07;
77 option domain−name ”orange.com”;
78 hardware ethernet 00:26:55:18:a4:74;
79 fixed−address 192.168.1.107;
80 }
81 }

Listing 4: orange.com.fwd

1 $ORIGIN orange.com.
2 $TTL 1D
3 @ IN SOA newhead.orange.com. root.orange.com. ( ; SOA is source, so put your dns server name here, and any

administrators
4 0 ; serial
5 1D ; refresh
6 1H ; retry
7 1W ; expire
8 3H ) ; minimum
9 IN NS newhead.orange.com. ; NS is loopback device

10 ;Head/Admin subnet
11 newHead IN A 192.168.0.254 ; IN A is a new dns entry for the table
12 scalityadm IN A 192.168.1.1
13 caringoadm IN A 192.168.2.1
14

15 ;Scality subnet
16 n00 IN A 192.168.1.100
17 n01 IN A 192.168.1.101
18 n03 IN A 192.168.1.103
19 n07 IN A 192.168.1.107
20 n10 IN A 192.168.1.110
21 n15 IN A 192.168.1.115
22 scality IN A 192.168.1.100
23 scality IN A 192.168.1.101
24 scality IN A 192.168.1.103
25 scality IN A 192.168.1.107
26 scality IN A 192.168.1.110
27 scality IN A 192.168.1.115
28

29 ;Caringo subnet
30 caringo IN A 192.168.2.102
31 caringo IN A 192.168.2.103

14



32 caringo IN A 192.168.2.104
33 caringo IN A 192.168.2.105
34 caringo IN A 192.168.2.106
35 caringo IN A 192.168.2.107
36 caringo IN A 192.168.2.108
37 caringo IN A 192.168.2.109
38 caringo IN A 192.168.2.110
39 caringo IN A 192.168.2.112
40

41 ;IPMI Interfaces
42 ipmi01 IN A 192.168.1.11
43 ipmi02 IN A 192.168.1.12
44 ipmi03 IN A 192.168.1.13
45 ipmi04 IN A 192.168.1.14
46 ipmi05 IN A 192.168.1.15
47 ipmi06 IN A 192.168.1.16
48 ; = comment
49 ; The origin selection will be attached to any address that does not end in a period, so remember to add final .

15



Appendix B: Scality Overview

Each green oval is a virtual node.

Figure 4: Scality Ring

16



Each virtual node is listed below with its keys.

Figure 5: Scality Keys

17



Appendix C: Scality Install
C.1 Node Configuration

Listing 5: Node Config

1 yum install −y openssh−clients kpartx parted epel−release
2 /etc/init.d/iptables stop
3 /root/scality/scality−install/scripts/scality−auto−build−disks.sh −X −y −A −i sda
4 cp /root/scality/scality−install/config/centos6/etc/yum.repos.d/scality.repo /etc/yum.repos.d/scality.repo
5 echo ”‘hostname −i‘ ‘hostname −f‘” >> /etc/hosts
6 yum −y install scality−biziod.x86 64 scality−node.x86 64 scality−ringsh.x86 64 scality−sagentd.x86 64 scality−sd−

httpd.x86 64 scality−sfused.x86 64 scality−sfused−common.x86 64 scality−sproxyd.x86 64 scality−sproxyd−
httpd.x86 64 scality−srebuildd.x86 64 scality−srebuildd−httpd.x86 64 scality−mod dewpoint.x86 64 scality−
ringsh scality−srebuildd

7 scality−node−config −p /scality/disk −d 3 −n 6 −u 192.168.1.1 −m ‘hostname −s‘−n −i ‘hostname −i‘
8 scality−sagentd−config −u 192.168.1.1
9 /etc/init.d/scality−node restart

10 /etc/init.d/scality−sagentd restart
11 /usr/local/scality−ringsh/config/generate−ringsh.py https://192.168.1.1:3443 data

C.2 Supervisor Configuration

Listing 6: Supervisor Config

1 #the 100,101,103 etc corresponded to the last 3 digits of our ip addresses for each node
2 for i in 100 101 103 104 107 113; do ringsh.py −r data supervisor serverAdd n$i−sagentd 192.168.1.$i 7084 ; done
3 echo −n ”bstrap =”; ringsh.py −r data supervisor serverList | awk ’{print $7}’ | sed s/\:/\ /g | awk ’{print $1 ”

:4244”}’ | tr ’\n’ ’,’

C.3 Node Configuration

Listing 7: sproxyd.conf

1

2 #
3 # sproxyd config file
4 #
5

6 #number of worker threads per task pool
7 #n workers = 100
8

9 #bind address
10 #bind = 0.0.0.0
11

12 #bind port
13 port = 10000
14

15 #connections backlog
16 #backlog = 10000
17

18 #number of incoming requests processed concurrently
19 #n responders = 500
20

21 #maximum number of open file descriptors
22 max proc fd = 40960
23

24 #syslog facility = ”daemon”

18



25 #chroot path =
26 #uid =
27 #gid =
28

29 #max simultaneous connections open to ring nodes
30 conn max = 10000
31

32 #max number of connection re−use before kicking it
33 conn max reuse = 100000
34

35 #enable or disable consistency check on reads, when requested
36 consistent reads = 1
37

38 #enable or disable consistency check on writes, when requested
39 consistent writes = 1
40

41 #list of class translations to enable. It’s a global parameter that
42 #can’t be specified per interface. The list consists of 0 or more
43 #tokens, each token if of the form ”a=b” or ”a:b” (without the quotes
44 #and without whitespace inside the token), where a is the class stored
45 #in the key, and b is the interpreted class for those keys.
46 #class translations = ”1:2,3:4”
47

48

49 #
50 # base path=/chord configuration
51 #
52 [chord]
53

54 #
55 # STRUCTURAL PARAMETERS (do not change them when set for a storage Ring)
56 #
57

58 #ring driver
59 ring driver = ”chord”
60

61 #enable path −> key conversion to use arbitrary paths as keys. a SHA1
62 #hash is done on the path after merging any consecutive string of ’/’ into
63 #a single ’/’.
64 by path enabled = 0
65

66 #service−id of keys generated by path −> key conversion
67 #by path service id = 0xC0
68

69 #class of service of keys generated by path −> key conversion
70 #by path cos = 2
71

72

73 #
74 # RING ACCESS PARAMETERS
75 #
76

77 #bootstraplist (port 4244 by default)
78 #eg. bstraplist = 1.2.3.4:4244,1.2.3.4:4245
79 bstraplist =

192.168.1.100:4244,192.168.1.101:4244,192.168.1.103:4244,192.168.1.107:4244,192.168.1.110:4244,192.168.1.115:4244,192.168.1.1:4244

80

81

82 #
83 # CHORD PERFORMANCE TUNING
84 #
85

19



86 #enable asynchronous writes (put) triggered in request headers (see
87 #documentation for how to specify asynchronous behaviour in requests)
88 deferred writes enabled by request = 0
89

90 #enable asynchronous writes (put) for classes of service defined in
91 #”deferred writes policy” parameter
92 deferred writes enabled by policy = 0
93

94 #set the asynchronous writes policy per class of service. It’s
95 #comma−separated or semicolon−separated list of class of service
96 #specs. Each spec is the class of service number, followed by a ’:’,
97 #followed by the minimum number of successful writes required before
98 #returning a success to the caller.
99 #deferred writes policy = ”1:1,2:1,3:2,4:2,5:3”

100

101 #enable asynchronous deletes triggered in request headers (see
102 #documentation for how to specify asynchronous behaviour in requests)
103 deferred deletes enabled by request = 0
104

105 #enable asynchronous deletes for classes of service defined in
106 #”deferred deletes policy” parameter
107 deferred deletes enabled by policy = 0
108

109 #set the asynchronous deletes policy per class of service. It’s
110 #comma−separated or semicolon−separated list of class of service
111 #specs. Each spec is the class of service number, followed by a ’:’,
112 #followed by the minimum number of successful deletes required before
113 #returning a success to the caller.
114 #deferred deletes policy = ”1:1,2:1,3:2,4:2,5:3”
115

116

117

118 #
119 # base path=/arc configuration
120 #
121 [arc]
122

123 #
124 # STRUCTURAL PARAMETERS (do not change them when set for a storage Ring)
125 #
126

127 #ring driver
128 ring driver = ”arc”
129

130 #enable path −> key conversion to use arbitrary paths as keys. a SHA1
131 #hash is done on the path after merging any consecutive string of ’/’ into
132 #a single ’/’.
133 #by path enabled = 0
134 by path enabled = 0
135

136 #service−id of keys generated by path −> key conversion
137 #by path service id = 0xC0
138

139 #class of service of keys generated by path −> key conversion
140 #by path cos = 0
141

142

143 #how many equally−spaced areas the RING is configured to support
144 arc schema = 6
145

146

147 #
148 # RING ACCESS PARAMETERS

20



149 #
150

151 #bootstraplist (port 4244 by default)
152 #eg. bstraplist = 1.2.3.4:4244,1.2.3.4:4245
153 bstraplist =

192.168.1.100:4244,192.168.1.101:4244,192.168.1.103:4244,192.168.1.107:4244,192.168.1.110:4244,192.168.1.115:4244,192.168.1.1:4244

154

155

156 #
157 # ARC STORAGE OVERHEAD CONTROL
158 #
159

160 #object class to use for replication
161 object class = 2
162

163 #minimum size in bytes where object is not stored replicated
164 #(−1: always replicated)
165 replication size threshold = 60000
166

167 #maximum number of arc data chunks
168 n data parts = 3
169

170 #number of arc coding chunks
171 n coding parts = 3
172

173 #number of redundant chunks written successfully before a PUT
174 #is considered successful (−1: all writes must succeed)
175 min redundant parts put ok = 2
176

177 #minimum size in bytes of a arc data chunk
178 min data part length = 20000
179

180

181 #
182 # ARC PERFORMANCE TUNING
183 #
184

185 #number of parallel tasks in the main task pool
186 main n workers = 10
187

188 #number of parallel tasks in the sub task pool
189 sub n workers = 10
190

191 #number of parallel tasks in the cache task pool
192 cache n workers = 10
193

194 #size in bytes of data stripes when cutting data on put
195 #stripe size = 262144
196 stripe size = 1048576
197

198 #size in bytes of data buffers read at once when reconstructing
199 get reconstruct buffer size = 1048576
200

201 #maximum number of write buffers queued from each client before blocking
202 max stripes in write queue = 2
203

204 #enable or disable caching of data and metadata
205 #(speeds up gets that need reconstruction)
206 chordcache enabled = 1
207

208

209

21



210 #sproxyd HOWTO using curl:
211

212 #do a PUT with base64−encoded user metadata (”myusermd”)
213 #curl −0 −XPUT −H ”x−scal−usermd: bXl1c2VybWQ=” http://localhost:81/proxy/chord/88

FF0A8375F3112C8E340A38E38FE93438412120 −−data−binary @/etc/hosts
214

215 #do a UPDATEMD (put partial): (”newusermd”)
216 #curl −0 −XPUT −H ”x−scal−cmd: update−usermd” −H ”x−scal−usermd: bmV3dXNlcm1k” http://localhost

:81/proxy/chord/88FF0A8375F3112C8E340A38E38FE93438412120
217

218 #do a GET
219 #curl http://localhost:81/proxy/chord/88FF0A8375F3112C8E340A38E38FE93438412120
220

221 #do a GET with a range (retrieve 500 bytes from the byte 1000).
222 #ranges with at least one missing bound are not supported.
223 #curl −r 1000−1499 http://localhost:81/proxy/chord/88FF0A8375F3112C8E340A38E38FE93438412120
224

225 #do a STAT (dumps all HTTP headers received, user metadata included)
226 #curl −I http://localhost:81/proxy/chord/88FF0A8375F3112C8E340A38E38FE93438412120
227

228 #do a DELETE
229 #curl −XDELETE http://localhost:81/proxy/chord/88FF0A8375F3112C8E340A38E38FE93438412120
230

231

232 #get statistics information
233 #curl http://localhost:81/proxy/chord/.stats
234

235 #reset statistics information
236 #curl −XDELETE http://localhost:81/proxy/chord/.stats
237

238 #get active configuration parameters, each on a line with format key=value
239 #curl http://localhost:81/proxy/chord/.conf

C.4 Supervisor Configuration

Listing 8: sfused.conf

1 #
2 ## Scality sfused configuration file
3 ##
4 ##
5

6 ## Documentation is available here:
7 ## http://docs.scality.com/doku.php?id=sfused:bizfs overview#sfused
8

9 # Volume number (0..2ˆ32)
10 # Scoping: when you change the ’dev’ value, you don’t see the objects put with another device id
11 dev = 987654323
12

13 # Dynamic mountpoint
14 mountpoint = /ring/fuse
15

16 # The logger id string is added to the log lines to mark the logs concerning this conf.
17 logger id = sfused
18

19 # check /usr/include/sys/syslog.h to see all the possibilities
20 # e.g.: auth, authpriv, news, syslog, mail, etc
21 syslog facility = mail
22

23 conn max = 10000
24 conn tcp nodelay = 1
25 conn max reuse = 100000
26

22



27 # check that a user belongs to a posix group (from /etc/group or whatever
28 # note that it might degrade the performance because checks are performed very often
29 group check = 0
30

31 ##
32 ## Ring FS
33 ##
34

35 file cos = 5
36 cat cos = 5
37 cat page cos = 5
38 dir cos = 5
39 dir page cos = 5
40 rootfs cos = 5
41 n open files buckets = 65521
42 honor forget = 1
43 max proc fd = 40960
44

45

46 ##
47 ## RootFS
48 ##
49

50 rootfs = 1
51 rootfs type = md5
52 rootfs cache = 3
53 allow rootfs listing = 1
54

55

56 ##
57 ## Cache
58 ##
59

60 # Set this property to allow a nonprivileged user to create/remove/rename directories under rootfs
61 allowed rootfs uid = 501
62

63 # Disable version checking in cache, semi−stateless mode. (recommended in failover setting)
64 cache enable checks = 0
65

66 # Force a check every x seconds for object read access, default is 0 (check all the time)
67 cache check time = 0
68

69 # Files preview (for application reading mail headers)
70 # To allow file previews set cache preview enable to ”1”, recommended value is disable, ’0’ (default value)
71 cache preview enable = 1
72 cache preview bytes = 16384 # in bytes
73

74 cache preview tail trick = 1
75 cache serialization dir = /var/cache/sfused cache
76 cache serialization period = 600
77

78 ##
79 ## Pools of worker threads
80 ##
81

82 # Chord workers
83 n workers = 480
84

85 # workers arc main =
86 # workers arc sub =
87 # workers arc cache =
88 # workers db index =
89 # workers db commit =

23



90 # workers db delete =
91 # workers prefetch =
92

93 ##
94 ## Undelete
95 ##
96

97 # Enable undelete journal to keep track of deleted keys
98 undelete = 1
99

100 # Purge threshold, in seconds, for undelete journal
101 undelete purge threshold = 604800
102

103 # Max age, in seconds, of deleted files in journal. Default is 604800 seconds (6 days)
104 # Value must be lower than the Ring purge expiration time
105 undelete duration = 300
106

107 # Allow undelete for objects matching this regexp (u\.∗ = dovecot mails)
108 undelete pattern = ”ˆu[.].∗”
109

110 # Do we match only the object’s name or its full path?
111 undelete pattern full path = 0
112

113 ##
114 ## geosync
115 ##
116

117 #geosync = 1
118 #geosync interval = 30
119 #geosync prog = /usr/local/bin/ssync
120 #geosync args = ’ssync $FILE $MOUNTPOINT / −−dev $DEV −−file−cos $FILE COS −−dir−cos $DIR COS’
121

122

123 [fuse]
124 fuse max tasks = 72
125 direct io = 0
126 big writes = 1
127 read ahead kb = 128
128

129 [ring driver:0]
130 type = chord
131 #bstraplist = node01−fuse.scality.com,node02−fuse.scality.com,node03−fuse.scality.com
132 bstraplist =

192.168.1.100:4244,192.168.1.101:4244,192.168.1.103:4244,192.168.1.107:4244,192.168.1.110:4244,192.168.1.115:4244,192.168.1.1:4244

133

134 client routing = 0
135

136 [ring driver:1]
137 type = srest
138

139 # The base path needs to match the path to the correct driver on sproxyd.
140 base path=/proxy/arc/
141 #
142 # ## <CHANGE ME>
143 #
144 # # NOTE: The data ring should be compromised of the first 6 node daemon processes on each storage node.
145 # # In this example, node daemon 1 on the first 6 servers is chosen (the port, if not listed, defaults to 4244).
146 # # The port used is port 81 for the httpd FastCGI module supporting sproxyd.
147 bstraplist =

192.168.1.100:81,192.168.1.101:81,192.168.1.103:81,192.168.1.107:81,192.168.1.110:81,192.168.1.115:81
148 #
149 #

24



150

151

152 #Files cache
153

154 [cache:0]
155 ring driver = 0
156 size = 2000000000
157 serialization = 1
158

159

160 #Directories cache
161

162 [cache:1]
163 ring driver = 0
164 size = 2000000000
165 serialization = 1
166

167 [cache:2]
168 ring driver = 0
169 size = 2000000000
170 serialization = 1
171

172 [cache:3]
173 ring driver = 0
174 size = 100000000
175 serialization = 1
176

177 #File Inode Mode
178

179 [ino mode:0]
180 type = mem
181 max file size = 536870912
182 cache = 0
183

184 #Directories Inode Mode
185

186 [ino mode:3]
187 type = mem
188 cache = 1
189

190 #Asynchronous Inode Mode
191

192 [ino mode:1]
193 type = async
194 max file size = 536870912
195 cache = 2
196 pattern = ’dovecot.index|.temp.centos6−fuse−pds.scality.com|.deleted’
197 queue path = /var/cache/sfused
198 pattern full path = 0
199 period = 30
200 ttl = 60
201 n workers = 12
202 size = 4000000000
203

204 ##Sparse Inode Mode
205 #
206 [ino mode:2]
207 type = sparse
208 cache stripes = 0
209 cache md = 0
210 pattern = .∗
211 pattern full path = 0
212 sticky = 1

25



213 #
214 fsid = 1
215 main cos = 5
216 page cos = 5
217 stripe cos = 5
218 stripe size = 1048576
219 #
220 file dirty limit = 128000000 # 128MB
221 global dirty limit = 1000000000 # 1GB
222 dirty timeout = 5
223 fsync on close = 1
224 workers io = 64
225 workers commit = 64

Appendix D: Scality cURL Commands

Listing 9: Scality cURL

1 #Verify ”scality−sproxyd” Service is Running
2 #NOTE: This service needs to be running on the ring nodes, if not running then start it.
3 #sudo su
4 #service scality−sproxyd status
5

6 #Generate a Random Key
7 ringsh.py
8

9 #When you are in the ringsh.py program enter the following command:
10 key random
11 #Use the key that it prints to the screen in your get/put/delete curl commands.
12

13 #PUT a File
14 curl −XPUT −H ”Expect:” −H ”x−scal−usermd: bXl1c2VybWQ=” http://localhost:81/proxy/chord/70

A249E993315C2CC3A7F10F76BCC37099447B00 −−data−binary @/root/test
15

16 #GET a File
17 curl http://localhost:81/proxy/chord/70A249E993315C2CC3A7F10F76BCC37099447B00
18

19 #DELETE a File
20 curl −XDELETE http://localhost:81/proxy/chord/70A249E993315C2CC3A7F10F76BCC37099447B00
21

22

23 ##ARC
24 #Generate a random ARC key, the last bit of the key is not random, but specifies settings
25 scalkeyarcgen −t arc −k 3 −m 3 −s 2 UPLOAD FILE PATH/FILE NAME
26 Output: D41D8CD98F00B204E9800900000000510C302070
27

28 #PUT a File
29 curl −0 −XPUT −H ”x−scal−usermd: bXl1c2VybWQ=” http://localhost:81/proxyd/arc/

D41D8CD98F00B204E9800900000000510C302070 −−data−binary @UPLOAD FILE PATH/FILE NAME
30

31 #Get a File
32 curl http://localhost:81/proxyd/arc/D41D8CD98F00B204E9800900000000510C302070 >

DOWNLOAD FILE PATH/FILE NAME
33

34 #Delete a File
35 curl −−XDELETE http://localhost:81/proxyd/arc/D41D8CD98F00B204E9800900000000510C302070
36

37 ##CDMI (We didn’t have these commands functioning)

26



38 curl −0 −v −XPUT −H ”Content−Type: application/cdmi−object” −H ”X−CDMI−Specification−Version: 1.0.1”
−d ’{ ”metadata”: { ”Data”:”bXl1c2VybWQ” }, ”value”: ”some text” }’ http://jumphost:80/fs/chris80

Appendix E: Scality MetaData

Listing 10: ListKeys.sh

1 #!/bin/bash
2 DSO=$1 #data
3 listKeysMethod=$2 #index or browse
4 db=$3
5 table=$4
6 export TERM=vt100
7 nodes=$(ringsh.py supervisor dsoStatus $DSO | grep ”Node:” | cut −d” ” −f 2 )
8 now=$(date +%s)
9 for node in $nodes ; do

10 echo ”Listing keys on $node”
11 echo −e ”load conf $DSO \n\n use $node \n\n node listKeys loadmetadata=$listKeysMethod \n\n” | ringsh.py

> work/keys.$node.$now
12 # I just redirect them from the above echo to a file, not an sql database (as the below lines would do)
13 # echo ”generating sql file for loading data from $node”
14 # sed ”s/\,/\’\,\’/g” work/keys.$node.$now | sed ”s/$/\’\)\;/g” | sed ”s/ˆ/insert into $table values\(\’$node

\’\,\’$listKeysMethod\’\,\’/” > work/keys.$node.$now.sql
15 # echo ”.quit” >> work/keys.$node.$now.sql
16 # echo ”loading data from $node in $db $table”
17 # cat work/keys.$node.$now.sql | sqlite3 $db
18 done
19 # xargs −t −n 1 −I{} echo −e \”load conf ring\n\n use {}\n\nnode dumpStats

Appendix F: Scality SFUSE

Listing 11: SFUSE Install

1 #Scality Documentation:
2 #http://docs.scality.com/display/DOCS/Install+the+SOFS+Connector+on+CentOS+or+RedHat
3

4 #Install Scality Package
5 sudo su
6 yum install scality−mod dewpoint−4.1.3.r34599−1.el6.x86 64
7 #This may require a scality repository if I remember correctly:
8 #[scality−base]
9 #name=CentOS6 − Scality Base

10 #baseurl=http://scalitycs:CSrepoPass@packages.scality.com/stable isildur/centos/6/x86 64/
11 #gpgcheck=0
12

13 #Copy Scality Configuration Files
14 cp /scality/scalityinstall/configs/scality/etc/ /etc/
15 scp nXX:/etc/sfused.conf /etc/sfused.conf
16 #Note: nXX is the DNS name or IP address of a storage node in the Scality ring.
17

18 #Create ”/ring” directory and Set Permissions
19 mkdir /ring
20 chmod g+w /ring
21 chown root:fuse /ring
22

23 #Mount the Control Filesystem for Fuse

27



24 mount −t fusectl none /sys/fs/fuse/connections
25

26 #Disable Transparent Hugepage Option
27 echo never > /sys/kernel/mm/redhat transparent hugepage/enabled
28

29 #Install Connector
30 yum install scality−sfused
31

32 #Create a Catalogue
33 sfused −X −c /etc/sfused.conf
34

35 #Start Connector
36 /etc/init.d/scality−sfused start
37

38 #Test Mounted Volume
39 mount −l | grep fuse

Appendix G: Caringo Install

Listing 12: Caringo Config Files

1 ################### Sample pxelinux.cfg ################
2 timeout 100
3 default menu.c32
4 ONTIMEOUT 1
5

6 menu title ############# CASTor boot menu ###########
7 label 1
8 kernel profiles/castor/kernel
9 append initrd=profiles/castor/fsimage ramdisk size=128000 root=/dev/ram0 castor cfg=http://192.168.2.1/

castor/cfg−list.txt
10

11 ############## Sample cfg−list.txt #############
12 http://192.168.2.1/castor/node.cfg
13

14 ############## Sample license.txt ###############
15 licenseFormat = 1.1
16

17 cn = Los Alamos National Laboratory
18 street =
19 l = Los Alamos
20 st = NM
21 postalCode =
22 co = US
23

24 clusterDescription = 1st Test Bed
25

26 # License Components
27 expirationDate = 2013−09−01
28 featureClusterMaxTB = 50
29 featureContentIndexing = yes
30 featureErasureCoding = yes
31 featureMinimumMinReps = 1
32

33 −−−−−BEGIN PGP SIGNATURE−−−−−
34 Version: GnuPG v1.4.10 (GNU/Linux)
35

36 iEYEARECAAYFAlHTCbEACgkQRYikRJU1RfOrvACeLkPs9Ro5A7HKxzYc4qfyz01p
37 +xMAn1M8h0YbKl3QUSCRDz4fZwuWf6ND
38 =Vdv2

28



39 −−−−−END PGP SIGNATURE−−−−−
40

41 ############### Sample Node configuration file #################
42

43 #to set a value the syntax is [key] = [value]
44 #[key] = type of setting to change
45 #[value] = the value to change the setting to
46 #a one space seperation is expected between the [key] ’=’ and [value]
47 #All headers can be chained together with dot notation.
48 #E.G. [cluster] \n\t name is equivalent to cluster.name
49

50

51 ######## Cluster Name
52 [cluster]
53 name = caringo.orange.com
54

55

56 ######## Node Disk Formating
57 #Sets the nodes to use all disk volume availible
58 #the :k flag sets the volumes to be kept if they expire.
59 #Volumes are set to expire if they are not detected in the last 14 days
60 #the cluster was active
61 [disk]
62 volumes = all:K
63

64

65 ######## NTP TIME SOURCE
66 #sets the timesource to the local ntp server
67 [network]
68 timeSource = 192.168.2.254
69 ######## LOG SERVER SETUP
70

71 #Sets log host ip, the minimum error level to log, and posts object id’s
72 #to the log file if that object has an error, instead of hiding object id’s
73 [log]
74 host = 102.168.2.1
75 level = 40
76 obscureUUIDs = False
77

78 ######## License SETUP
79 #Castor requires that the product licence be serviced by a web server
80 [license]
81 url=http://192.168.2.1/castor/license.txt
82

83

84 ######## Security SETUP
85 #You may also set many security options. For our test bed we left the snmp public
86 #format for users is {’USER’ : ’PASSWORD’ }
87 #Instead of clear text use MD5 of following string ’<username>:CAStor administrator:<password>’
88 [security]
89 administrators = {’admin’ : ’admin’ , ’snmp’ : ’admin’}
90 operators = {’snmp’:’public’}
91

92 ######## ERASURE CODE SETUP
93 #To set the cluster to erasure code add the following lines to node.cfg
94 #sets encoding to 3 + 3 and minimume file size to erasure code to 60KB
95 [ec]
96 encoding = 3:3
97 minStreamSize = 61440
98

99

100

101

29



102 ######## INDEXER SETUP
103 #The only supported indexer service is elastic search, using the
104 #comercial plugin provided by caringo. This set up sets elastic search
105 #as the indexing agent, and sets the metadata kept on each stream in the
106 #cluster to full
107 [indexer]
108 name = elasticsearch
109 fullMetadata = 1
110

111 [indexer elasticsearch]
112 host = HOST IP
113 port = 9200 #Default port number, can be changed
114 connectionRetryInterval = 10
115 insertBatchSize = 100
116 insertBatchTimeout = 60
117 className = caringo.castor.indexer.plugin.elasticsearchplugin.ElasticSearchPlugin

Appendix H: Caringo cURL Commands Cluster name = caringo.orange.com Domain name = caringo.orange.com
(Doesn’t have to be the same as cluster name )

Listing 13: Caringo Basic Commands

1 #BUCKET CREATION EXAMPLE
2 curl −i −−post301 −−data−binary ’’ −−location−trusted ’http://caringo.orange.com/mybucket?domain=caringo.

orange.com’
3

4 #PUSH example ’push up hello world’
5 curl −i −−post301 −−data−binary ’<html><h1>Hello World</h1></html>’ −H ’Content−type: text/html’

−−location−trusted ’http://caringo.orange.com/mybucket/helloworld?domain=caringo.orange.com’
6

7 #GET example ’get hello world’
8 curl −i −−post301 −−location−trusted ’http://caringo.orange.com/mybucket/helloworld
9 #GET example GUID

10 curl −i −−post301 −−location−trusted ’http://caringo.orange.com/[GUID GOES HERE]?domain=caringo.orange.
com

11

12 #COPY example ’rename a bucket’
13 #change mybucket to bucket
14 curl −i −−post301 −X COPY −−data−binary ’’ −−location−trusted ’http://caringo.orange.com/mybucket?

domain=caringo.orange.com&newname=bucket’
15

16 #Delete a file
17 curl −i −−post301 −X DELETE −−location−trusted ’http://caringo.orange.com/mybucket/helloworld’

Appendix I: Caringo MetaData

Listing 14: Caringo Metadata

1 #Basic metadata
2 Query arg #Description
3 tmBorn #time of create or last update
4 size #size in bytes
5 name #UUID or name using URL encoding
6 content−type #content type
7 etag #entity tag

30



8 sizewithreps #number of bytes using the maximum reps value
9

10 #Full metadata
11 content−base
12 content−disposition
13 content−encoding
14 conten−language
15 content−length
16 content−location
17 content−md5
18 last−modified
19 lifepoint
20

21

22 #Custom Fields
23 x−∗−meta
24 x−∗−meta−∗

The custom fields can be filled by adding to the http header, and then queried using Get requests.
Examples

Listing 15: Metadata Get Requests

1 #Query a cluster to find all the the buckets in a domain
2 curl −i http://caringo.orange.com?domain=caringo.orange.com&format=json
3

4 #Query a bucket for all of its contents
5 curl −i http://caringo.orange.com/mybucket?domain=caringo.orange.com&format=xml
6

7 #Find the amount of storage being used by a bucket
8 curl −i http://caringo.orange.com/mybucket?domain=caringo.orange.com&format=json&du=yes

31



Glossary

Block storage This is the underlying idea behind most file systems. The space available is blocked out
to store files and folders on. 3, 9

curl Linux command used to do http request via the command line. ‘man curl‘. 6, 8

FUSE Filesystem in USerspacE. Tool to enabled Unix operating systems to create a file system in user
space. A type of ”bridge” to the kernel calls. 6

Object storage Uses flexible data containers that are not set to a particular block size. The data is
stored uninterpreted with metadata. 3

POSIX Portable Operating System Interface. IEEE specifications for maintaining compatibility across
multiple operating system.. 3, 6, 8–10

REST REpresentational State Transfer. Makes use of the HTTP methods GET, POST, PUT and
DELETE to execute operations over HTTP. This is in contrast to SOAP. 5, 6, 8, 10

SFUSE Scality’s version of FUSE to connect a user to a seeming Block storage device that is actually
their ring or Object storage storage in the background. 3, 5, 6

32


	Abstract
	Functional Tests
	Testbed
	Scality Testbed
	Caringo Testbed
	Network Overview

	Scality
	Overview
	Install
	The Basics: Reading and Writing
	RESTful
	POSIX

	Recovery Capabilities
	Data Balancing
	Metadata
	Scality Results and Observations

	Caringo
	Overview
	Install
	The Basics: Reading and Writing
	Basic Commands
	POSIX

	Recovery and Rebalance
	Metadata
	Caringo Result and Observations

	Conclusions
	Futurework

	Acknowledgements
	References
	Appendices
	Network Setup
	Scality Overview
	Scality Install
	Node Configuration
	Supervisor Configuration
	Node Configuration
	Supervisor Configuration

	Scality cURL Commands
	Scalitty MetaData
	Scality SFUSE
	Caringo Install
	Caringo cURL Commands
	Caringo MetaData

	Glossary

